

Ergebnisse Grobanalyse Photovoltaik-Potenzial städtischer Dachflächen

Bezug zu Antrag Nr. 433/20, IKEK-Maßnahme K3 und mündlicher Bericht SHL 22.04.2021

FACHBEREICH HOCHBAU UND GEBÄUDEWIRTSCHAFT – ENERGIEMANAGEMENT

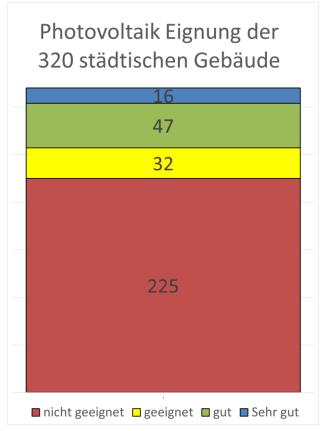
Johannes Kurz

Energiemanager

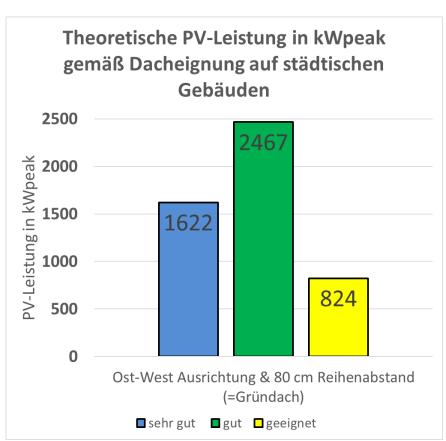
Ludwigsburg

23. September 2<mark>021</mark>

PV-Potenzialanalyse


Verfahrensweise mit Antrag Nr. 433/20

	Grobanalyse	Feinanalyse
Ziel	Identifizierung von Dachflächen im städt. Eigentum zur prinzipiellen Eignung für die Installation von PV-Anlagen	Detaillierte Betrachtung der identifizierten Dachflächen hinsichtlich verschiedener Möglichkeiten zur PV-Nutzung
Aspekte	 Dachflächen: Größe, Ausrichtung & Sanierungszustand; Denkmalschutz voraussichtliche PV-Leistung erste wirtschaftliche Betrachtung (Eigennutzung, Fremdnutzung) Verschattungsabschätzung 	 Wirtschaftlichkeitsmodelle Eigenbedarf, Vermietung, Contracting, Stromkosteneinsparung Klimawirkung vs. Wirtschaftlichkeit Dachflächen: Statik Bei Flachdächern: Prüfung der Verträglichkeit von PV mit Gründächern gemäß KliK Überprüfung der Übernahme von Altanlagen ggf. Repowering; evtl. Fassadeflächen
Ergebnis	Ausbaupotenzial Kennzahl / Erfolgsindikator z.B. für PV genutzte Dachfläche pro Summe aller geeigneten Dachflächen	Ausbaustrategie Vorschlag konkreter Handlungsempfehlungen / Entwicklungskorridor ab 2022 (Zubau in kWp / Jahr)
Zeit	Ende Q2 → Mündlicher Bericht	Ende Q4 → Mündl. Bericht / Vorlage

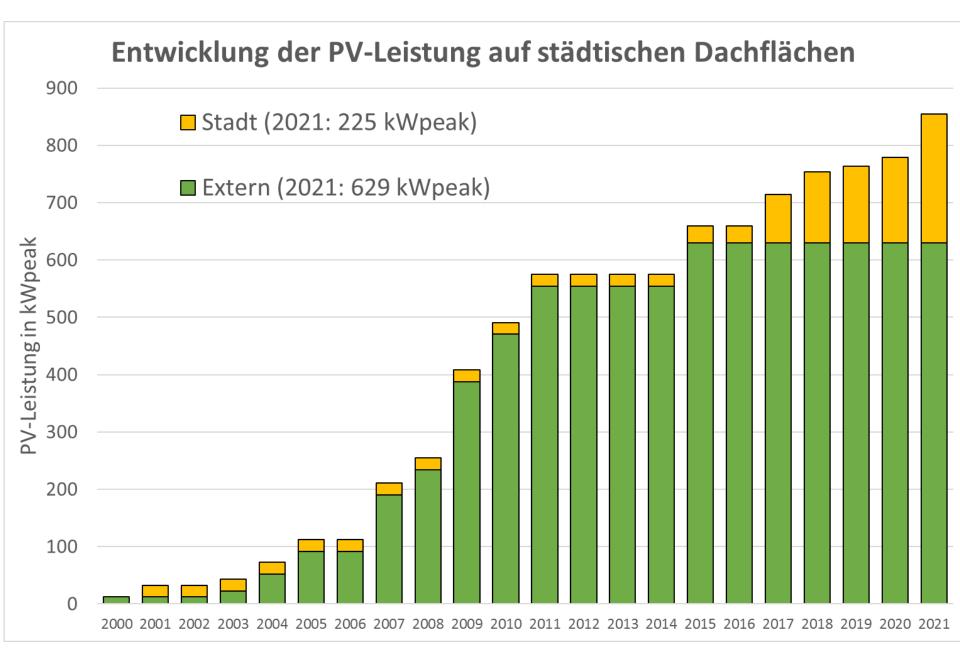

Klassifizierung der untersuchten städtischen Gebäude hinsichtlich Photovoltaiknutzung

sehr gut	sehr große Dachflächen, nahezu vollständiger Eigenverbrauch
gut	große Dachflächen, Eigenverbrauch vorhanden, Gebäudenutzung durch Stadt
geeignet	externe Nutzung, schattig, Dachausrichtung, geringe Dachfläche
nicht geeignet	Denkmalschutz, Photovoltaik nicht möglich oder bereits vorhanden

Vorhandene Dachflächen und die daraus resultierende Leistung & Ertrag

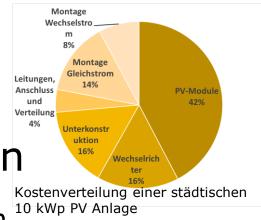
Geeignete Dachflächen für Photovoltaik-Anlagen (Grobanalyse!):

29.500 m²


Mögliche Photovoltaik-Gesamtleistung:

4.900 kW_{peak}

Photovoltaik-Ertrag in LB pro Jahr bei Vollbelegung (Annahme: 990 kWh/kWp*Jahr):


4.851.000 kWh

(Stromverbrauch städt. Gebäude 2020: ca. 6.000.000 kWh)

Investitions- und Betriebskosten

<u>Investitionskosten</u>

Modulkosten:

- bis 15 kW_{peak} Ø ≈ 1700 € / kWp [Ø-Preis aus 4 LB-Anlagen]
- ab 15 kW_{peak} Ø ≈ 1100 € / kWp [Ø-Preis aus 4 LB-Anlagen]
- Installationsaufwand
- Planungskosten

Betriebskosten

PV-Anlagen sind wartungsarm!

Jährlich relativ geringe Kosten für:

- Versicherung
- · ggf. Gründachpflege
- z.T. Lizenzkosten zur Fernüberwachung

Rendite

Entlastung des konsumtiven Haushalts

Beispiel 54,6 kW _p PV-Anlage Kulturzentrum			
Investitionskosten	70.917 € _{netto} (= 1299 €/kW _{Peak})		
Energiekosteneinsparung	10.500 € / Jahr (Strompreis 2020: 0,20 €/kWh _{netto})		
Eigenverbrauch	nahezu 100 %		
Refinanzierung	7 Jahre		
Anlagennutzungszeit	rund 30 Jahre		
Einsparung insgesamt	210.000 €		
Energiegestehungskosten über 25 Jahre	5,9 Cent / kWh		
Energiegestehungskosten über 30 Jahre	5,1 Cent / kWh		

Anstieg Stromverbrauch und -kosten

Stromverbrauch (Ludwigsburg)

- Wärmewende: Vermehrter Einsatz von Wärmepumpen in Gebieten, die nicht mit Fernwärme erschlossen sind
- Verkehrswende: Elektrifizierung des Verkehrs (Auto + Fahrrad). Ausbau der Ladeinfrastruktur an öffentlichen Gebäuden und tägliche Nutzung dieser durch städtische Mitarbeiter, Lehrer, usw.
- Kühlung & Lüftungstechnik:
 Temperaturanstieg & Extremwetterereignisse werden mittelfristig Kühlung von öffentlichen Gebäuden notwendig machen (vgl. Klimaanpassungskonzept)
- Digitalisierung:
 zunehmende Anzahl elektronischer Anwendungen

Strompreis (bundesweit)

Zusätzlich zur Wärmewende und Verkehrswende ist eine Energiewende notwendig, dadurch steigen die Kosten wegen:

- Kohleausstieg & CO₂-Preis
- Netzumbau
- Wasserstoffherstellung

Grobanalyse → Feinanalyse

- Konkrete Ausbauziele für die nächsten 5 Jahre definieren
- Dachflächen auswählen und hinsichtlich einer Realisierung der Photovoltaik-Anlagen priorisieren
- Dachflächen zur Eigenstromerzeugung definieren
- ⇒ Statik, Wirtschaftlichkeit, Gegebenheiten vor Ort, Direktvermarktung untersuchen
- Photovoltaik-Potenzial und -Kosten konkretisieren
- ⇒ Dachflächen für SWLB / Extern freigeben

Welcher Zubau an PV pro Jahr ist anzustreben?

- Jährlicher Zubau von X kWpeak ?
- Jährliche Anzahl an PV-Anlagen?
- Jährliche Installation einer Anlage > 100 kWp?

→ Wenn die vorhandenen Dachflächen bis 2050 voll bestückt werden sollen, ist ein jährlicher Zubau von 170 kWp notwendig!

LUDWIGSBURG

Gartenstraße 14: Mensa